KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction

Yunyong Ko yyko@illinois.edu University of Illinois at Urbana-Champaign, IL, USA

Yeongseung Jeon ysj@g.ucla.edu University of California Los Angeles, CA, USA

Kyungsik Han kyungsikhan@hanyang.ac.kr Hanyang University Seoul, Republic of Korea Seongeun Ryu ryuseong@hanyang.ac.kr Hanyang University Seoul, Republic of Korea

Jaehoon Kim jaehoonkimm@hanyang.ac.kr Hanyang University Seoul, Republic of Korea

Hanghang Tong htong@illinois.edu University of Illinois at Urbana-Champaign, IL, USA Soeun Han sosilver@hanyang.ac.kr Hanyang University Seoul, Republic of Korea

Sohyun Park sally5004@ajou.ac.kr Ajou University Suwon, Republic of Korea

Sang-Wook Kim* wook@hanyang.ac.kr Hanyang University Seoul, Republic of Korea

(WWW-2023)

code: https://github.com/yy-ko/khan-www23

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

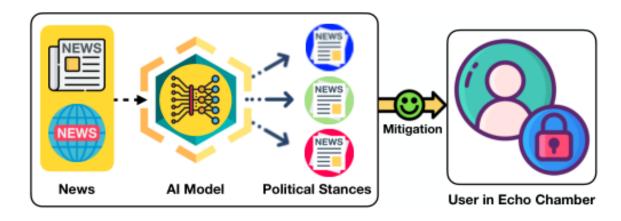


Figure 1: Accurate provision of diverse political stances to mitigate the echo chamber effect.

The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect – people fall into their thoughts and reinforce their pre-existing beliefs.

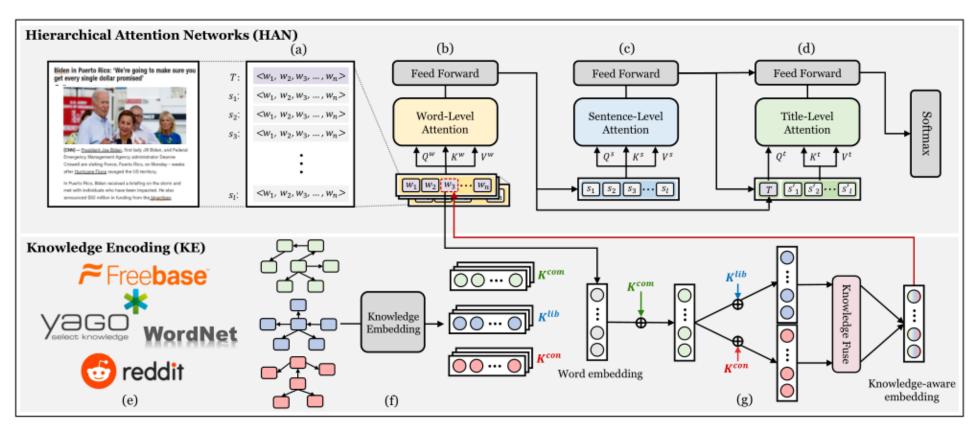


Figure 2: The overview of KHAN: hierarchical attention networks (upper) and knowledge encoding (lower).

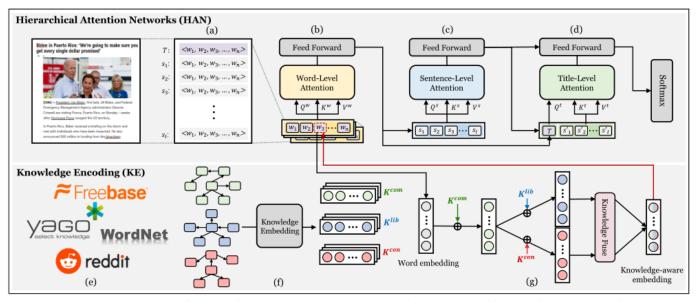


Figure 2: The overview of KHAN: hierarchical attention networks (upper) and knowledge encoding (lower).

Notation	Description
	•
W	a set of word embeddings
S	a set of sentence embeddings
T	the title embedding
w_i, s_j	i^{th} word embedding, j^{th} sentence embedding
d	the embedding dimensionality
N	the total number of words in a dataset
n	the maximum number of words in a sentence
1	the maximum number of sentences in an article
K^{com}	a set of common knowledge embeddings
K^{lib}	a set of liberal knowledge embeddings
K^{con}	a set of conservative knowledge embeddings
α, β	common and political knowledge factors
A, a	news article dataset and a news article
X	a set of learnable parameters
$F(\cdot)$	loss function (i.e., cross-entropy loss)
η	user-defined learning rate

$$S = \{s_1, s_2, ..., s_l\}$$

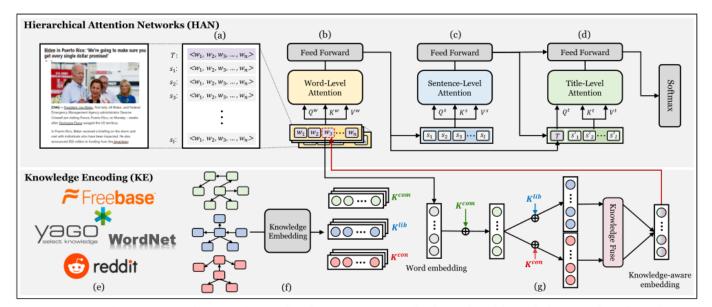


Figure 2: The overview of KHAN: hierarchical attention networks (upper) and knowledge encoding (lower).

$$\min_{w \in \mathbb{R}} \frac{1}{|A|} \sum_{a \in A} F(X, a) + ||X||^2, \tag{1}$$

$$\tilde{W}_{i} = MultiHead(Q^{w}, K^{w}, V^{w}), \tag{2}$$

$$Q^w = K^w = V^w = W_j$$

$$s_j = Avg(\tilde{W}_j)$$

$$\tilde{S}_k = MultiHead(Q^s, K^s, V^s),$$
 (3)
 $Q^s = K^s = V^s = S_k$

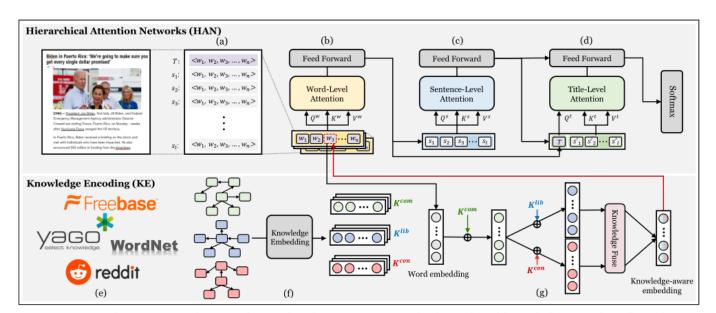


Figure 2: The overview of KHAN: hierarchical attention networks (upper) and knowledge encoding (lower).

$$\tilde{S}_k^T = MultiHead(Q^t, K^t, V^t), \tag{4}$$

$$\tilde{S}_k^* = \tilde{S}_k^T + \tilde{S}_k, \tag{5}$$

$$\hat{y} = Predict(a_k), \quad a_k = Avg(\tilde{S}_k^*),$$
 (6)

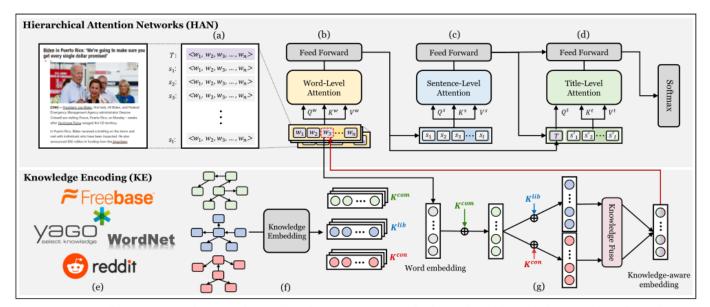


Figure 2: The overview of KHAN: hierarchical attention networks (upper) and knowledge encoding (lower).

$$\begin{split} e &\leftarrow W[i] \\ e^{com} &\leftarrow (1-\alpha) \cdot e \oplus \alpha \cdot K^{com}[i] \\ e^{lib} &\leftarrow (1-\beta) \cdot e^{com} \oplus \beta \cdot K^{lib}[i] \\ e^{con} &\leftarrow (1-\beta) \cdot e^{com} \oplus \beta \cdot K^{con}[i] \\ W^*[i] &\leftarrow \mathsf{Fuse}([e^{lib} \| e^{con}]) \oplus e \end{split}$$

'⊕' means the element-wise addition

Table 2: Statistics of political KGs.

	KGAP [13]	KG-lib	KG-con
# of source posts	-	219,915	276,156
# of entities	1,071	5,581	6,316
# of relations	10,703	29,967	33,207
Political stances	Both	Liberal	Conservative

Table 3: Statistics of political news article datasets.

Dataset	# of articles	Class distribution
SemEval	645	407 / 238
AllSides-S	14.7k	6.6k / 4.6k / 3.5k
AllSides-L	719.2k	112.4k / 202.9k / 99.6k / 62.6k / 241.5k

Table 4: Comparison of the model accuracy on three realworld datasets (The bold font indicates the best results).

Method	Dataset			
	SemEval	AllSides-S	AllSides-L	
Word2Vec [50]	0.7027	0.4858	0.4851	
GloVe [55]	0.8071	0.7101	0.6354	
ELMo [56]	0.8678	0.8197	0.7483	
BERT [29]	0.8692	0.8246	0.7812	
RoBERTa [48]	0.8708	0.8535	0.8222	
KGAP [13]	0.8956	0.8602	N/A	
KCD [69]	0.9087	0.8738	N/A	
KHAN-RotatE	0.9426	0.9151	0.8584	
KHAN-HAKE	0.9395	0.9216	0.8563	
KHAN-ModE	0.9521	0.9256	0.8617	

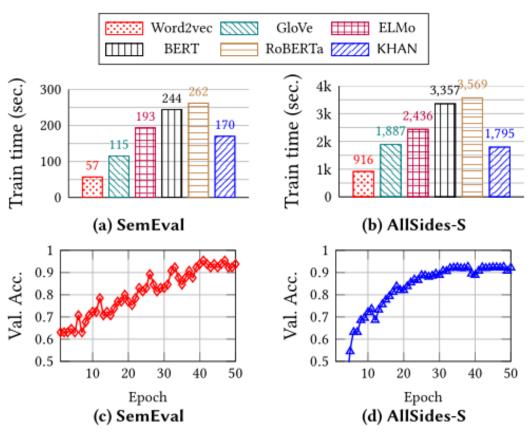


Figure 3: The training time and convergence rate with respect to training epochs on SemEval and AllSides-S.

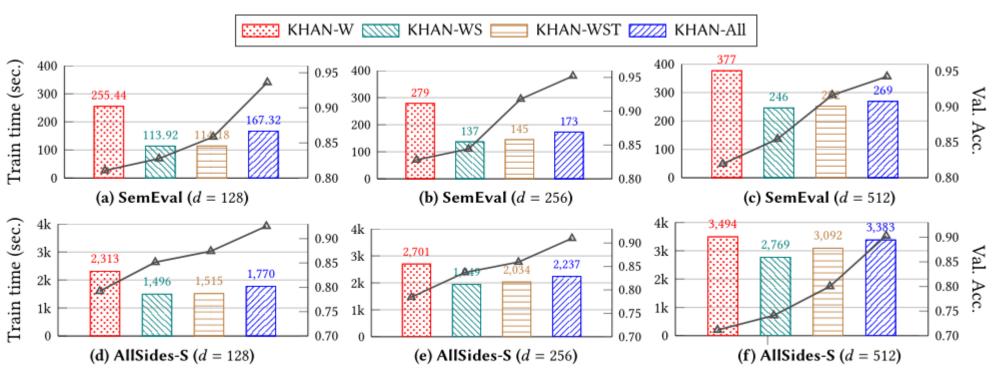


Figure 4: Effectiveness of the main components of KHAN in terms of the training time (bar) and model accuracy (line).

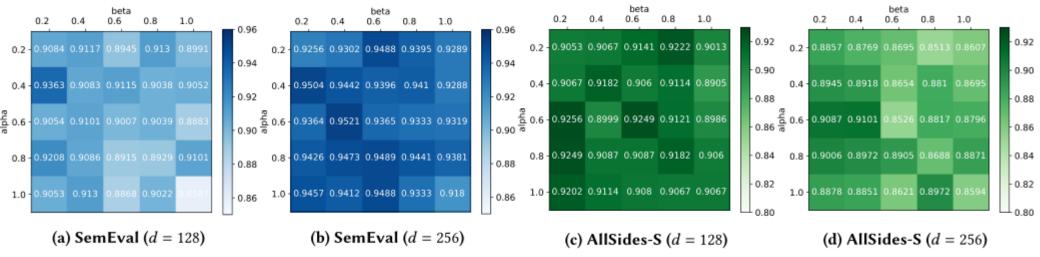


Figure 5: The impact of hyperparameters α and β on the model accuracy of KHAN in political stance prediction.

Table 5: Result of the user study: the top-5 factors in political stance predictions and their importance scores.

Rank	Factor name	Importance score (1-5)
1	Context	4.19 ± 0.94
2	Keyword	4.01 ± 0.88
3	Person	3.94 ± 0.96
4	Tone	3.93 ± 1.13
5	Freq. used word	3.35 ± 1.07

Table 6: The knowledge graph (KG) completion accuracy of RotatE [62] on KG-lib and KG-con.

]	RotatE			
Metric		KG-lib			KG-con	
	d = 128	d = 256	d = 512	d = 128	d = 256	d = 512
MR	632.69	573.84	567.85	728.78	654.26	640.45
MRR	0.1312	0.1700	0.1859	0.1079	0.1494	0.1633
HITS@1	0.0842	0.1089	0.1209	0.0692	0.0974	0.1093
HITS@3	0.1316	0.1801	0.1985	0.1059	0.1549	0.1693
HITS@10	0.2133	0.2859	0.3148	0.1743	0.2429	0.2625

Table 7: The knowledge graph (KG) completion accuracy of ModE [71] on KG-lib and KG-con.

ModE						
Metric		KG-lib			KG-con	
	d = 128	d = 256	d = 512	d = 128	d = 256	d = 512
MR	690.14	622.40	645.23	777.11	740.88	723.90
MRR	0.1312	0.1700	0.1859	0.1128	0.1354	0.1501
HITS@1	0.0842	0.1089	0.1209	0.0685	0.0801	0.0913
HITS@3	0.1316	0.1801	0.1985	0.1127	0.1404	0.1567
HITS@10	0.2133	0.2859	0.3148	0.1981	0.2458	0.2648

Table 8: The knowledge graph (KG) completion accuracy of HAKE [71] on KG-lib and KG-con.

		1	HAKE			
Metric		KG-lib			KG-con	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	d = 128	d = 256	d = 512	d = 128	d = 256	d = 512
MR	593.76	597.58	606.03	694.30	684.55	685.92
MRR	0.1474	0.1688	0.1787	0.1311	0.1498	0.1639
HITS@1	0.0904	0.1102	0.1167	0.0831	0.0992	0.1120
HITS@3	0.1541	0.1761	0.1895	0.1348	0.1550	0.1704
HITS@10	0.2595	0.2844	0.3013	0.2205	0.2434	0.2612

Table 9: Comparison of our experimental results with the reported results [69] on SemEval (The bold font indicates the results better than the reported results).

Method	SemEval			
	Validation Acc.	Reported Acc.		
Word2Vec	0.7076 ± 0.0104	0.7027		
GloVe	0.8077 ± 0.0251	0.8071		
ELMo	0.8666 ± 0.0197	0.8678		
BERT	0.8769 ± 0.0156	0.8692		
RoBERTa	0.8923 ± 0.0112	0.8708		
KGAP	N/A	0.8956		
KCD	N/A	0.9087		
KHAN-RotatE	0.9426 ± 0.0258	N/A		
KHAN-HAKE	0.9395 ± 0.0290	N/A		
KHAN-ModE	0.9521 ± 0.0183	N/A		

Table 10: Comparison of our experimental results with the reported results [69] on AllSides-S (The bold font indicates the results better than the reported results).

Method	AllSid	les-S
	Validation Acc.	Reported Acc.
Word2Vec	0.4977 ± 0.0082	0.4858
GloVe	0.6978 ± 0.0204	0.7101
ELMo	0.8085 ± 0.0178	0.8197
BERT	0.8201 ± 0.0101	0.8246
RoBERTa	0.8682 ± 0.0081	0.8535
KGAP	N/A	0.8602
KCD	N/A	0.8738
KHAN-RotatE	0.9151 ± 0.0105	N/A
KHAN-HAKE	0.9216 ± 0.0041	N/A
KHAN-ModE	0.9256 ± 0.0098	N/A

Thank you!